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Abstract
The inviscid limit of the Burgers equation, with body forces white noise in time,
is discussed in terms of the level surfaces of the minimizing Hamilton–Jacobi
function and the classical mechanical caustic and their algebraic pre-images
under the classical mechanical flow map. The problem is analysed in terms
of a reduced (one-dimensional) action function using a circle of ideas due to
Arnol’d, Cayley and Klein. We characterize those parts of the caustic which
are singular, and give an explicit expression for the cusp density on caustics and
level surfaces. By considering the double points of level surfaces we find an
explicit formula for the Maxwell set in the two-dimensional polynomial case,
and we extend this to higher dimensions using a double discriminant of the
reduced action, solving a long-standing problem for Hamiltonian dynamical
systems. When the pre-level surface touches the pre-caustic, the geometry
(number of cusps) on the level surface changes infinitely rapidly causing ‘real
turbulence’. Using an idea of Klein, it is shown that the geometry (number
of swallowtails) on the caustic also changes infinitely rapidly when the real
part of the pre-caustic touches its complex counterpart, causing ‘complex
turbulence’. These are both inherently stochastic in nature, and we determine
their intermittence in terms of the recurrent behaviour of two processes.
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1. Introduction

Burgers equations have been used in studying turbulence and in modelling the large-scale
structure of the universe [1], as well as to obtain detailed asymptotics for stochastic Schrödinger
and heat equations [2]. In the deterministic case, they have also played a part in Arnol’d’s
pioneering work on caustics and Maslov’s seminal works in semiclassical quantum mechanics
which inspired much of the early work in this subject [3].

We consider the stochastic, viscous Burgers equation for the velocity field vµ(x, t) ∈ R
d ,

where x ∈ R
d , t > 0,

∂vµ

∂t
+ (vµ · ∇)vµ = µ2

2
�vµ − ∇V (x) − ε∇kt (x)Ẇ t ,

vµ(x, 0) = ∇S0(x) + O(µ2),

Ẇ t being white noise and µ2 the coefficient of viscosity being small.
We are interested in the advent of discontinuities in

v0(x, t) = lim
µ↘0

vµ(x, t).

The corresponding Stratonovich heat equation for the scalar temperature uµ(x, t) ∈ R, reads

∂uµ

∂t
= µ2

2
�uµ + µ−2V (x)uµ + εµ−2kt (x)uµ ◦ Ẇ t ,

uµ(x, 0) = exp

(
−S0(x)

µ2

)
T0(x),

where the convergence factor T0 is related to the initial Burgers fluid density. Here the
connection is the Hopf–Cole transformation

vµ(x, t) = −µ2∇ ln uµ(x, t).

Following Donsker, and Freidlin and Wentzell [4], as µ → 0,

−µ2 ln uµ(x, t) → inf
X(0)

[S0(X(0)) + A(X(0), x, t)] = S(x, t),

where

A(X(0), x, t) = inf
X(s)

X(t)=x

A[X],

A[X] = 1

2

∫ t

0
Ẋ2(s) ds −

∫ t

0
V (X(s)) ds − ε

∫ t

0
ks(X(s)) dWs.

This gives the minimal entropy solution of the Burgers equation [5]. Necessary conditions for
X to be an extremizer of A[X] = A[X] + S0(X(0)) are

dẊ(s) + ∇V (X(s)) ds + ε∇ks(X(s)) dWs = 0, Ẋ(0) = ∇S0(X(0)).

Minimizing A[X] over X(0) gives S(x, t), the minimal solution of the Hamilton–Jacobi
equation

dSt +
(

1
2 |∇St |2 + V (x)

)
dt + εkt (x) dWt = 0, St=0(x) = S0(x).

Definition 1.1. The stochastic wavefront at time t is defined to be the set

Wt = {x : S(x, t) = 0}.

For small µ, the heat equation solution uµ(x, t) switches continuously from being
exponentially large to small as we cross the wavefront Wt . However, uµ and vµ can also
switch discontinuously as we now explain.
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Define the classical flow map �s : R
d → R

d by

d�̇s + ∇V (�s) ds + ε∇ks(�s) dWs = 0, �0 = id, �̇0 = ∇S0.

Since X(t) = x by definition,

X(s) = �s�
−1
t x,

where we accept that x0(x, t) = �−1
t x is not necessarily unique. Given some regularity and

boundedness, the global inverse function theorem gives a caustic time T (ω) > 0 such that for
0 < s < T (ω), �s is a random diffeomorphism. For t < T (ω),

v0(x, t) = �̇t

(
�−1

t x
)

is a classical solution of the Burgers equation with probability 1.
The method of characteristics suggests that discontinuities in v0(x, t) are associated with

non-uniqueness of real x0(x, t). This is related to when an infinitesimal volume of points dx0

focus into zero volume dX(t) under the classical flow map �t .

Definition 1.2. The caustic Ct is the set of points x found by eliminating x0 between

det

(
∂X(t)

∂x0

)
= 0 and x = �t(x0).

The pre-caustic �−1
t Ct is found by eliminating x algebraically to give an equation in x0.

When �−1
t {x} = {x0(1)(x, t), x0(2)(x, t), . . . , x0(n)(x, t)}, where each x0(i)(x, t) ∈ R

d ,
the Feynman–Kac formula and Laplace’s method in infinite dimensions give for a non-
degenerate critical point:

uµ(x, t) =
n∑

i=1

θi exp

(
−Si

0(x, t)

µ2

)
,

where

Si
0(x, t) = S0(x0(i)(x, t)) + A(x0(i)(x, t), x, t),

θi being an asymptotic series in µ2.
When x0(x, t) = x0(1)(x, t) is unique, t < T (ω), Hamilton–Jacobi theory [6] gives for

each integer m:

vµ(x, t) =
m∑

j=0

µ2j vj (x, t) − µ2∇ ln E


exp


−µ2m

2

∫ t

0
∇ · vm

(
yµ

s , t − s
)

ds

+
1

2

2m∑
j=m+1

µ2(j−1)
∑

0�i1�i2�m
i1+i2=j

∫ t

0
vi1 · vi2

(
yµ

s , t − s
)

ds




 ,

where vj (x, t) = ∇Sj (x, t) and Sj satisfies the Hamilton–Jacobi continuity equations

∂Sj

∂t
+

1

2

∑
i1,i2�0
i1+i2=j

∇Si1 · ∇Si2 = 1

2
�Sj−1,

for j = 0, 1, 2, . . . , with the convention 1
2�S−1 = −V − εktẆ t . Here each Sj can be found

explicitly.
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Ct

1 x0

3 x0’s 2 x0’s

Wt

H0
t

Figure 1. Cusp and tricorn.

Moreover, y
µ
s , the Nelson diffusion process, is given by

dyµ
s = µ dBs − ∇

m∑
j=0

µ2j Sj

(
yµ

s , t − s
)

ds, y
µ

0 = x, y
µ
t = x0(x, t).

Therefore, the asymptotic series θ is known explicitly and as µ ∼ 0,

vµ(x, t) ∼ ∇S0(x, t) + O(µ2),

S0(x, t) being the minimizing action as expected.
When �−1

t {x} = {x0(1)(x, t), x0(2)(x, t), . . . , x0(n)(x, t)}, there is a similar asymptotic
series θi to the above corresponding to x0(i)(x, t), but in this case there is no simple form for
the remainder term. Observe that S(x, t) = mini=1,2,...,n Si

0(x, t).

Definition 1.3. The Hamilton–Jacobi level surfaces are defined by the equation

Hc
t = {

x : Si
0(x, t) = c for some i

}
,

where H 0
t includes the wavefront Wt . The pre-level surface �−1

t H c
t is the expression in x0

found by algebraically eliminating x using x = �t(x0).

The dominant term for v0(x, t) comes from the minimizing x0(i)(x, t) denoted by x̃0(x, t)

(assumed unique) and we obtain the corresponding inviscid limit of the Burgers fluid velocity:

v0(x, t) = �̇t x̃0(x, t).

Two x0(i)(x, t)’s can coalesce and disappear (become complex), as we cross the caustic
surface Ct . When this corresponds to the minimizing x0(i)(x, t) jumping, uµ=0 and vµ=0 have
jump discontinuities, and we describe the caustic as cool. Alternatively, we can have a jump
if there are two distinct minimizers returning the same minimum value of the action. Such
points are said to be in the cool part of the Maxwell set.

Example 1.4 (the generic cusp). Let V (x, y) = 0, kt (x, y) = 0, and S0(x0, y0) = x2
0y0

/
2.

This initial condition leads to the generic cusp, a semicubical parabolic caustic. This is shown
in figure 1. The caustic Ct (dashed line) is given by

xt (x0) = t2x3
0 , yt (x0) = 3

2
tx2

0 − 1

t
.

The zero level surface H 0
t (solid line) is

x(t,0)(x0) = x0

2

(
1 ±

√
1 − t2x2

0

)
, y(t,0)(x0) = 1

2t

(
t2x2

0 − 1 ±
√

1 − t2x2
0

)
.
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Cusped Side of Caustic On Cool Caustic Beyond Caustic

x0(1)

x0(2) = x̃0(x, t)

x0(3)

x0(4)

(a)

(b)

(a) (b)

Minimizer at Two x0’s coalescing Minimizer jumps.

x0(2)(x, t) = x̃0(x, t). form point of inflexion.

Figure 2. The graph of the phase function as x crosses the caustic.

Evidently n, the multiplicity of real x0(x, t)’s, depends upon x and t. This multiplicity
changes by multiples of 2 as we cross the caustic surface. It can be shown that this is associated
with level surfaces of Hamilton’s characteristic function having cusps on the caustic (see
figure 1).

We illustrate this in one dimension by considering the integral

I (x, t) =
∫

R

G(x0) exp

(
i
F(x0, x, t)

µ2

)
dx0,

where G ∈ C∞
0 (R) and i = √−1 for small µ. Consider the graph of the phase function,

F(x,t)(x0) = F(x0, x, t), as x crosses the caustic surface Ct (see figure 2).
Here x̃0(x, t) jumps from (a) to (b) causing uµ and vµ for small µ to have jump

discontinuities. This only occurs when the point of inflexion is the global minimizer of
F. When two x0’s coalesce at a minimum of F, we are on a ‘cool part of the caustic’ giving
jump discontinuities in uµ and vµ for small µ. Two x0’s coalescing and becoming complex,
correspond to the level surface Hc

t having cusps as indicated in figures 3 and 4.
(Note that the cusped part of the level surface, Cusp

(
Hc

t

) = �t

(
�−1

t Ct ∩�−1
t H c

t

)
and that

normally �−1
t H c

t 
= �−1
t

(
Hc

t

)
, where �−1

t

(
Hc

t

)
denotes the topological inverse image, while

�−1
t H c

t is determined algebraically by eliminating x betweenA(x0, x, t) = c and x = �t(x0).)
Cusps occur on the level surfaces of Hamilton’s characteristic function at points where

the corresponding pre-level surfaces intersect the pre-caustic. In three dimensions, let nc(t)

be the number of cusped curves in Ct ∩ Hc
t , or in two dimensions, the number of cusps on

Hc
t . We are interested in when nc(t) changes. The simplest way for this to happen is for the

corresponding pre-surface to touch the pre-caustic. The times t when nc(t) changes are the
zeros of a stochastic process ζ (zeta), i.e. times t when ζ(t) = 0. When the driving force is
white noise in time, such times t form a perfect set, i.e. an infinite set with no isolated points.
Thus, at such times the geometry of the level surface of the Hamilton–Jacobi function changes
infinitely rapidly as it would in turbulent behaviour. We call this phenomenon real stochastic
turbulence.

There is another kind of complex stochastic turbulence associated with the infinitely fast
creation and destruction of tiny swallowtails on the caustic determined by the zeros of the
resultant eta process ρη. This occurs when the real pre-caustic touches its complex counterpart.
The tiny swallowtails formed in this way contain Maxwell sets across which typically v0 is
discontinuous.

When we cross the Maxwell set, two critical points of the phase function F return the
same F value. If these correspond to the minimizing x0, our solutions for u0 and v0 will jump
(figure 11). This event is equivalent to the level surfaces of the Hamilton–Jacobi function
having a point of self-intersection, and clearly can only occur in regions with three or more
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(a) (b)

Figure 3. (a) The zero pre-level surface (solid line) and pre-caustic (dashed line), and (b) the zero
level surface (solid line) and caustic (dashed line), both for the generic cusp.

(a) (b)

Figure 4. (a) The pre-level surface (solid line) and pre-caustic (dashed line), and (b) the level
surface (solid line) and caustic (dashed line), both for the generic cusp with c > 0.

pre-images under �t . As we shall see, in the two-dimensional case, this provides a fundamental
link between the existence of the Maxwell set and swallowtails on the caustic and level surfaces.
Hence, these play a role in the special nature of complex turbulence.

We begin, in section 2, by recapitulating some results from [7]. Section 3 then develops
the one-dimensional analysis which we use extensively throughout our results. Section 4
contains a detailed analysis of singularities in two dimensions. We investigate the Maxwell
set by considering the Maxwell–Klein set of non-cusp double points of the level surface. As
we shall show, this can be found easily as a result of a simple factorization (theorems 4.15
and 4.16). We then demonstrate, in section 6, how these ideas can be extended to find the
set of all discontinuities for the inviscid limit of the Burgers fluid velocity in any dimension
(theorem 6.3). This solves a long-standing problem in applied mathematics and yields the
Maxwell set as part of an algebraic surface.

Section 5 discusses the nature of the two-dimensional turbulence and gives explicit
formulae for the cusp density on level surfaces and the caustic. We shall see that real
turbulence can only occur at points in the cool part of the caustic where the caustic tangent has
a scalar product zero with the Burgers fluid velocity. We show that the ζ process is just the
reduced action function evaluated at these specific points on the caustic. The recurrence of
ζ is then equivalent to the stochastic turbulence being intermittent. It is shown that complex
turbulence is a special form of real turbulence occurring at certain generalized cusps of the
caustic. Complex turbulence can only occur at times t which are the zeros of ρη, the resultant
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eta process given by the discriminant of the third derivative of the reduced action function
evaluated on the caustic.

The results in this paper are valid for the stochastic Burgers equation but also hold in the
case of zero noise (ε = 0), i.e. for the deterministic Burgers equation. In some examples
we work exclusively with zero noise, but this is explicitly stated. The turbulent phenomena
outlined above can only arise in the stochastic case. Although there are equivalent results for
the deterministic case, these do not give rise to turbulent behaviour.

Notation. Throughout this paper x, x0, xt , x(t,c), etc will denote vectors, where normally
x = �tx0. Cartesian coordinates of these will be indicated using a sub/superscript where
relevant, so x = (x1, x2, . . . , xd), x0 = (

x1
0 , x2

0 , . . . , xd
0

)
, etc. The only exception to this

will be when we discuss explicit examples in two and three dimensions when we shall use
(x, y), (x0, y0), etc to denote these vectors.

2. Geometrical results of DTZ in two dimensions (or more)

We summarize the geometrical relationships between curves which are level surfaces of the
Hamilton–Jacobi function and shockwaves or caustics for the Burgers equation as established
by Davies, Truman and Zhao (DTZ) [7].

Definition 2.1. A curve x = x(γ ), γ ∈ N(γ0, δ), is said to have a generalized cusp at
γ = γ0, γ being an intrinsic variable such as arc length, if

dx

dγ

∣∣∣∣
γ=γ0

= 0.

We begin by considering the deterministic case, where x0 = (
x1

0 , x2
0 , . . . , xd

0

)
and

x = (x1, x2, . . . , xd) so that x, x0 ∈ R
d and t > 0:

A = A(x0, x, t) = S0(x0) + A(x0, x, t),

where

A(x0, x, t) = inf
X(0)=x0
X(t)=x

[∫ t

0

{
1

2
Ẋ(s)2 − V (X(s))

}
ds

]
.

The corresponding Euler Lagrange equation reads

Ẍ(s) = −∇V (X(s)), s ∈ [0, t], X(t) = x, X(0) = x0.

In the free case, V ≡ 0 so

A(x0, x, t) = (x − x0)
2

2t
+ S0(x0).

We assume that A(x0, x, t) is C4 in space variables for times t > 0, giving

∂A
∂xα

0

= 0, α = 1, 2, . . . , d ⇔ x = �tx0 = x0 + t∇S0(x0).

We shall see later that this result is true in enormous generality.
The Hamilton–Jacobi level surface Hc

t is obtained by eliminating x0 between

A(x0, x, t) = c and
∂A
∂xα

0

(x0, x, t) = 0, α = 1, 2, . . . , d.
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Alternatively, eliminating x gives the pre-level surface �−1
t H c

t . Similarly, the pre-caustic
�−1

t Ct (and caustic Ct ) are obtained by eliminating x (or x0) between

det

(
∂2A

∂xα
0 ∂x

β

0

(x0, x, t)

)
α,β=1,2,...,d

= 0 and
∂A
∂xα

0

(x0, x, t) = 0,

for α = 1, 2, . . . , d.

In the free case, the equation for the zero pre-level surface is the eikonal equation

t

2
|∇S0(x0)|2 + S0(x0) = 0,

and the derivative map D�t(x0) is given by the Hessian

D�t(x0) = I + t∇2S0(x0).

These, together with the key identity

∇x0

{
t

2
|∇S0(x0)|2 + S0(x0)

}
= (1 + t∇2S0(x0))∇S0(x0),

give us the following results.

Lemma 2.2 (free case in two dimensions). Assume that the pre-level surface meets the pre-
caustic at x0 where |(I + t∇2S0(x0))∇S0(x0)| 
= 0 and dim(ker(I + t∇2S0(x0))) = 1. Then,
the tangent plane to the pre-level surface Tx0 is spanned by ker(I + t∇2S0(x0)).

Proposition 2.3 (free case in two dimensions). Assume that |(I + t∇2S0(x0))∇S0(x0)| 
= 0,

so that x0 is not a singular point of �−1
t H c

t , then �tx0 can only be a generalized cusp if
�t(x0) ∈ Ct , the caustic. Moreover, if x = �tx0 ∈ �t

(
�−1

t Ct ∩ �−1
t H c

t

)
, x will indeed be a

generalized cusp of the level surface.

The above results generalize to d dimensions, to very general deterministic systems and
to systems with noise. Let the stochastic action be defined by

A(x0, p0, t) = 1

2

∫ t

0
Ẋ(s)2 ds −

∫ t

0

[
V (X(s)) ds + εks(X(s)) dWs

]
,

where Xs = X(s) = X(s, x0, p0) ∈ R
d and

dẊ(s) = −∇V (X(s)) ds − ε∇ks(X(s)) dWs, s ∈ [0, t],

with X(0) = x0, Ẋ(0) = p0 and x0, p0 ∈ R
d . We assume Xs is Fs measurable and unique. If

dus dẊ(s) = 0, we have∫ t

0
u(s) dẊ(s) = u(t)Ẋ(t) − u(0)Ẋ(0) −

∫ t

0
u̇(s)Ẋ(s) ds.

In particular, this is true when us = ∂Xs

∂xα
0

, where α = 1, 2, . . . , d . Using Kunita [8], mild
regularity gives

d

ds

(
∂Xs

∂xα
0

)
= ∂Ẋs

∂xα
0

, α = 1, 2, . . . , d,

almost surely.
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Lemma 2.4 (d dimensions). Assume S0, V ∈ C2 and k ∈ C2,0,∇V,∇k Lipschitz with
Hessians ∇2V,∇2k and all second derivatives with respect to space variables of V and k
bounded. Then, for p0 possibly x0 dependent,

∂A

∂xα
0

(x0, p0, t) = Ẋ(t) · ∂X(t)

∂xα
0

− Ẋα(0), α = 1, 2, . . . , d.

Now let

A(x0, x, t) = A(x0, p0, t)|p0=p0(x0,x,t),

where p0 = p0(x0, x, t) is the random minimizer (assumed unique) of A(x0, p0, t) when
X(t, x0, p0) = x. (Here we need the map p0 → X(t, x0, p0) ∈ R

d to be onto for all x0.
Methods of Kolokoltsov et al [9] guarantee this for small t.)

Theorem 2.5 (d dimensions). Let the stochastic flow map be �t , then x = �t(x0) is equivalent
to

∂

∂xα
0

[S0(x0) + A(x0, x, t)] = 0, α = 1, 2, . . . , d.

We now define the stochastic action corresponding to the initial momentum ∇S0(x0) by

A(x0, x, t) = A(x0, x, t) + S0(x0).

Assume that A(x0, x, t) is C4 in space variables with det
(

∂2A
∂xα

0 ∂xβ

) 
= 0, and that ker(D�t) is
one dimensional. Then, we have

Proposition 2.6 (d dimensions). The random classical flow map has Frechet derivative a.s.

(D�t)(x0) =
(

− ∂2A
∂x∂x0

)−1 (
∂2A

∂x0∂x0
(x0, x, t)

)
and the normal to the pre-level surface is

n(x0) = −
(

∂2A
∂x0∂x0

)(
∂2A

∂x0∂x

)−1

Ẋ(t, x0,∇S0(x0)).

(These are analogues of

D�t(x0) = (I + t∇2S0(x0))

and

∇x0

{
t

2
|∇S0(x0)|2 + S0(x0)

}
= (I + t∇2S0(x0))∇S0(x0)

in the free case.)
We content ourselves with quoting

Theorem 2.7 (three dimensions). Let

x ∈ Cusp
(
Hc

t

) = {
x ∈ �t

(
�−1

t Ct ∩ �−1
t H c

t

)
, x = �t(x0), n(x0) 
= 0

}
.

Then, in three dimensions in the stochastic case, with probability 1, Tx the tangent space to
the level surface at x is at most one dimensional.
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3. A one-dimensional analysis

3.1. Global reducibility

We now explain how a one-dimensional analysis first described by Reynolds, Truman and
Williams (RTW) [10] greatly simplifies our approach.

Definition 3.1. The classical flow map �t is globally reducible if

x = �tx0, x = (x1, x2, . . . , xd), x0 = (
x1

0 , x2
0 , . . . , xd

0

)
⇒ xα

0 = xα
0

(
x, x1

0 , x2
0 , . . . , xα−1

0 , t
)
, α = d, d − 1, . . . , 2. (1)

We want C2 functions xd
0 , xd−1

0 , . . . , x2
0 such that

xd
0 = xd

0

(
x, x1

0 , x2
0 , . . . , xd−1

0 , t
) ⇔ ∂A

∂xd
0

(x0, x, t) = 0,

xd−1
0 = xd−1

0

(
x, x1

0 , x2
0 , . . . , xd−2

0 , t
) ⇔ ∂A

∂xd−1
0

(
x1

0 , x2
0 , . . . , xd

0 (·), x, t
) = 0,

...

x2
0 = x2

0

(
x, x1

0 , t
) ⇔ ∂A

∂x2
0

(
x1

0 , x
2
0 , x3

0

(
x, x1

0 , x2
0 , t

)
, . . . , xd

0 (·), x, t
) = 0,

where xd
0 (·) = xd

0

(
x, x1

0 , x2
0 , . . . , xd−1

0 , t
)
. We assume that no root is repeated so the second

derivatives of A do not vanish. (Some local reducibility follows from mild assumptions about
A and its derivatives.) Evidently, we are assuming a favoured ordering of coordinates and a
corresponding decomposition of �t allowing the non-uniqueness to be reduced to the level of
the x1

0 coordinate. We begin with a result of RTW.

Proposition 3.2. Assume �t is globally reducible. Define the reduced action

f(x,t)

(
x1

0

)
:= f

(
x1

0 , x, t
) = A

(
x1

0 , x2
0

(
x, x1

0 , t
)
, x3

0(·), . . . , x, t
)
.

Then,

(i) ∂f

∂x1
0

(
x1

0 , x, t
) = 0 and the previous equation (1) ⇔ x = �tx0;

(ii) ∂f

∂x1
0

(
x1

0 , x, t
) = ∂2f(

∂x1
0

)2

(
x1

0 , x, t
) = 0 and the previous equation (1) ⇔ x = �tx0 is such

that the number of real solutions x0 of this equation changes.

The key to this proof is the following lemma.

Lemma 3.3. If �t is globally reducible,∣∣∣∣∣det

(
∂2A

(∂x0)2
(x0, x, t)

)∣∣∣∣
x=�tx0

∣∣∣∣∣ =
d−1∏
α=0

∣∣∣∣∣ ∂2A(
∂xd−α

0

)2

(
x1

0 , x
2
0

(
x, x1

0 , t
)
, . . . , xd

0 (·), x, t
)∣∣∣∣∣ ,

where the last term is f ′′
(x,t)

(
x1

0

)
and the first d − 1 terms are non-zero.
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Proof. The principle of stationary phase applied to the evaluation of

I =
∫

R
d

G(x0) exp

(
− i

µ2
A(x0, x, t)

)
dx0,

by repeated integration shows that, if we assume

∂f

∂x1
0

(
x1

0 , x, t
) = 0

has n real roots and that x is such that

∂2f(
∂x1

0

)2

(
x1

0 , x, t
) 
= 0,

then the first equation will have n real simple roots, critical points of f corresponding to
{x0(i)(x, t)}i=1,2,...,n. Varying x so that

∂2f(
∂x1

0

)2

(
x1

0 , x, t
) = 0,

allows typically two of these n critical points to coalesce. �

The phase function F in the introduction is simply this reduced action function F
(
x1

0 , x, t
) =

f
(
x1

0 , x, t
)

where x ∈ R
d . From here we denote f

(
x1

0 , x, t
) = f(x,t)

(
x1

0

)
to highlight its

univariance in x1
0 . Also note that if x0(i)(x, t) denote the real pre-images of x, then

x0(i)(x, t) := (
x1

0(i)(x, t), x2
0(i)(x, t), . . . , xd

0 (i)(x, t)
)

= (
x1

0(i)(x, t), x2
0

(
x, x1

0 (i)(x, t), t
)
, . . . , xd

0

(
x, x1

0(i)(x, t), . . . , t
))

,

where x1
0(i)(x, t) is then an enumeration of the real roots x1

0 of f ′
(x,t)

(
x1

0

) = 0.
This reduced action function provides a universal one-dimensional analysis of all aspects

of the problem. The caustic surface is found by eliminating the x1
0 variable between

f ′
(x,t)

(
x1

0

) = 0 and f ′′
(x,t)

(
x1

0

) = 0.

This allows us to view the caustic as the bifurcation set of the univariate function f . The level
surfaces are found by eliminating x1

0 between

f(x,t)

(
x1

0

) = c and f ′
(x,t)

(
x1

0

) = 0.

For polynomial f , these eliminations can be done simply by taking resultants with respect to
x1

0 . This is found by taking the determinant of the Sylvester matrix [11]. We shall return to
this point in section 6.3. The reduced action also provides information on the geometry of the
caustic, level surfaces and Maxwell set, and, as we shall explain, gives a simple approach to
points of turbulent behaviour on the caustic.

3.2. Caustic parametrization

Corollary 3.4. Let λ = (λ1, λ2, . . . , λd−1) ∈ R
d−1 where λ → (

λ, xd
0,C(λ)

)
is a

parametrization of the pre-caustic at time t, so that xt (λ) = �t

(
λ, xd

0,C(λ)
)

is a parametrization
of the caustic—the pre-parametrization. Then,

f ′
(xt (λ),t)(λ1) = f ′′

(xt (λ),t)(λ1) = 0.

Proof. A simple corollary to proposition 3.2 using the fact that xt (λ) = �t

(
λ, xd

0,C(λ)
)
. �
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Thus, there is a critical point of inflexion on f at x1
0 = λ1 for this parametrization.

Moreover, the geometry of the caustic is determined by the higher derivatives of f . In d
dimensions we call a part of the caustic with (d − 2)-dimensional tangent space associated
with the above pre-parametrization the principal subcaustic,

xsc
t = �t

(
λ, xd

0,C(λ)
)∣∣

λd−1=λd−1(λ1,...,λd−2)
,

where λd−1(·) is determined by

det
α,β=1,...,d−1

(
∂xt

∂λα

· ∂xt

∂λβ

)
= 0.

In two dimensions this corresponds to cusps and in three dimensions to creasing the caustic
along a curve. Here we must assume that the derivatives

{
∂�t (x0)

∂xα
0

}
α=2,3,...,d

are always linearly
independent.

Proposition 3.5. If, using the above pre-parametrization, xt (λ) is on the subcaustic, then

f ′
(xt (λ),t)(λ1) = f ′′

(xt (λ),t)(λ1) = f ′′′
(xt (λ),t)(λ1) = 0.

Proof. Differentiating the equation f ′′
(xt (λ),t)(λ1) = 0 with respect to each λα gives the d − 1

equations

0 = ∂xt

∂λ1
(λ) · ∇xf

′′
(xt (λ),t)(λ1) + f ′′′

(xt (λ),t)(λ1),

0 = ∂xt

∂λα

(λ) · ∇xf
′′
(xt (λ),t)(λ1),

where α = 2, . . . , d − 1. On the subcaustic, there exist scalars κα with κ1 
= 0 such that
d−1∑
α=1

κα

∂xt

∂λα

= 0,

and the result follows. �

We can also form the converse to this proposition. For instance, in the two-dimensional
case:

Theorem 3.6. If in two dimensions

f ′
(xt (λ0),t)

(λ0) = f ′′
(xt (λ0),t)

(λ0) = f ′′′
(xt (λ0),t)

(λ0) = 0,

and the vectors

∇xf
′
(xt (λ0),t)

(λ0), ∇xf
′′
(xt (λ0),t)

(λ0)

are linearly independent, then there is a generalized cusp on the caustic at xt (λ0).

Proof. As we are dealing with two dimensions, we have no need for an index for λ or λ0.
Differentiating the two equations f ′

(xt (λ),t)(λ) = f ′′
(xt (λ),t)(λ) = 0 with respect to λ yields

x ′
t (λ) · ∇xf

′
(xt (λ),t)(λ) = 0, x ′

t (λ) · ∇xf
′′
(xt (λ),t)(λ) + f ′′′

(xt (λ),t)(λ) = 0.

Setting λ = λ0, the result follows. �

This idea can be extended to higher derivatives of the reduced action function, for instance:

Proposition 3.7. In three dimensions, if there is a generalized cusp on the subcaustic at a
point xt (λ) then

f ′
(xt (λ),t)(λ1) = f ′′

(xt (λ),t)(λ1) = f ′′′
(xt (λ),t)(λ1) = f

(4)

(xt (λ),t)(λ1) = 0.
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We can characterize other features of the caustic in terms of the reduced action function.
For instance,

Lemma 3.8. There is a point of self-intersection at xt (λ) if and only if there exists a solution

f ′
(xt (λ),t)

(
x1

0

) = f ′′
(xt (λ),t)

(
x1

0

) = 0,

with x1
0 
= λ1.

Proof. A simple result following from proposition 3.2. �

3.3. Hot and cool caustics

The hot and cool designation divides the caustic into two distinct regions where the inviscid
limit of the Burgers fluid velocity is either continuous (hot) or discontinuous (cool) (recall
figure 2).

Definition 3.9. Let xt (λ) be the pre-parametrization of the caustic using the pre-caustic.
Then, xt (λ) is on the cool part of the caustic if f(xt (λ),t)(λ1) � f(xt (λ),t)

(
x1

0(i)(xt (λ), t)
)

for
all i = 1, 2, . . . , n, where x1

0(i)(x, t) denotes an enumeration of all the real roots for x1
0 to

f ′
(x,t)

(
x1

0

) = 0. If the caustic is not cool, it is hot.

Definition 3.10. The pre-normalized reduced action function evaluated on the caustic is given
by

Fλ

(
x1

0

) = f(xt (λ),t)

(
x1

0

)− f(xt (λ),t)(λ1).

Assume that Fλ

(
x1

0

)
is a real analytic function in a neighbourhood of λ1 ∈ R. Clearly,

Fλ(λ1) = F ′
λ(λ1) = F ′′

λ (λ1) = 0, and so

Fλ

(
x1

0

) = (
x1

0 − λ1
)3

F̃
(
x1

0

)
,

where F̃ is real analytic. When the inflexion at x1
0 = λ1 is the minimizing critical point of Fλ,

the caustic will be cool. Therefore, on a hot/cool boundary, this inflexion is about to become
or cease being the minimizer.

Proposition 3.11. A necessary condition for xt (λ) ∈ Ct to be on a hot/cool boundary is that
either

(i) F̃
(
x1

0

)
or

(ii) G̃
(
x1

0

) = 3F̃
(
x1

0

)
+
(
x1

0 − λ1
)
F̃ ′(x1

0

)
has a repeated root at x1

0 = r . Note that normally r 
= λ1.

Proof. There are two ways in which the minimizer could change. Firstly, F̃ could have a
repeated root which is also the minimizer. Secondly, there could be another inflexion at a
lower value which is the minimizer. This would correspond to a point of self-intersection of
the caustic. �

The condition is not sufficient as it includes both cases where the repeated root is complex
and where the repeated root is real but there is not a hot/cool boundary (see figure 5).
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Increasing λ Caustic changes from hot to cool No change in nature of caustic

Possible

hot/cool

boundary

Figure 5. Graphs of Fλ(x
1
0 ).

κ

ψ

Cool

Hot

Figure 6. Hot and cool parts of the polynomial swallowtail caustic at time t = 1.

Example 3.12 (the polynomial swallowtail). Let V (x, y) ≡ 0, kt (x, y) ≡ x and

S0(x0, y0) = x5
0 + x2

0y0.

This gives global reducibility and kt (x, y) ≡ x means that the effect of the noise is to translate
the ε = 0 picture through

(−ε
∫ t

0 Ws ds, 0
)
. A simple calculation gives

F̃ (x0) = 12λ2 − 3λt + 6λx0 − tx0 + 2x2
0 ,

G̃(x0) = 15λ2 − 4λt + 10λx0 − 2tx0 + 5x2
0 ,

so that the boundary points are

κ =
(

− t5

500
− ε

∫ t

0
Ws ds,− 1

2t
+

t3

50

)
,

ψ =
(

− t5(3 + 8
√

6)

18 000
− ε

∫ t

0
Ws ds,− 1

2t
+

t3(9 − √
6)

450

)
.

This is illustrated in figure 6 where the cool parts are shown with a thick solid line and the
hot parts with a thin dashed line. Note that κ is the point of self intersection (crunode) and so
arises from G̃ whereas ψ is a regular point of the caustic and arises from F̃ .

4. Further geometric results in two dimensions

It is well known that the geometry of a caustic curve or wavefront can suddenly change with
singularities appearing and disappearing. Arnol’d classified six such perestroikas for two-
dimensional caustics and five for wavefronts [12]. Using the much earlier work of Cayley
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Figure 7. Cayley’s triple points.

and Klein, we investigate one of these perestroikas, namely the formation or collapse of a
swallowtail.

In his work on plane algebraic curves, Cayley described the possible triple points of a
curve [13]. He classified these by considering the collapse of systems of double points which
would lead to the existence of three tangents at a point. The four possibilities are shown in
figure 7 where the systems will collapse to form a triple point with

(i) three real distinct tangents;
(ii) three real tangents with two coincident;

(iii) three real tangents all of which are coincident;
(iv) one real tangent and two complex tangents.

We are particularly interested in the possibility of interchange between the last two cases.
Felix Klein proved in his work on Riemann surfaces that a swallowtail forms when an isolated
double point (acnode) joins the main curve [14].

Previously, we have parametrized our curves and allowed our parameter to vary only
through the reals. Thus, we do not normally obtain isolated double points. However,
swallowtails do still form on some of these curves.

We find the isolated double points by allowing our parameter to vary throughout the
complex plane and then considering when this maps to real points. We assume that the curves
are of the form x(λ) = (x1(λ), x2(λ)) where each xα(λ) is real analytic in λ ∈ C so that if
λ = a + iη where a, η ∈ R,

x(a + iη) = x(a − iη).

Then, if Im{x(a + iη)} = 0,

x(a + iη) = x(a − iη),

so such a point is a double point. We will refer to these points as ‘complex double points’ of
the curve x(λ).

We can interpret the definition of generalized cusps in terms of complex parameter values
by following a simple idea of Klein.

Lemma 4.1. If x(λ) = (x1(λ), x2(λ)) is a real analytic parametrization of a curve and λ is
an intrinsic parameter, then there is a generalized cusp at λ = λ0 if and only if the curves

0 = 1

η
Im{xα(a + iη)}, α = 1, 2

intersect at (λ0, 0) in the (a, η) plane.

Proof. For small η,
1

η
Im{x(a + iη)} = 1

2iη
(x(a + iη) − x(a − iη))

= dx

dλ
(a) + O(η2),

from Taylor’s theorem. The result then follows by setting a = λ0 and η = 0. �
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We now consider a family of parametrized curves xt (λ) = (
x1

t (λ), x2
t (λ)

)
. As t varies,

the geometry of the curve can change with swallowtails forming and disappearing.

Proposition 4.2. If a swallowtail on the curve xt (λ) collapses to a point where λ = λ0 when
t = t0, then

dxt0

dλ
(λ0) = d2xt0

dλ2
(λ0) = 0.

Proof. This is a simple consequence of the two generalized cusps in a swallowtail coinciding.
�

Similarly, we can consider the effect of a complex double point joining the curve.

Proposition 4.3. If a complex double point joins the curve xt (λ) at λ = λ0 when t = t0, then

dxt0

dλ
(λ0) = d2xt0

dλ2
(λ0) = 0.

Proof. If a complex double point has joined the curve then for α = 1, 2, the curves
1

η
Im
{
xα

t0
(a + iη)

} = 0

must both intersect at (λ0, 0) and so the surfaces

zα(a, η) = 1

η
Im
{
xα

t0
(a + iη)

}
must have critical points at (λ0, 0) where zα = 0.

Therefore, since

zα(a, η) = dxα
t

dλ
(a) + O(η2),

we know that we must satisfy

dxα
t0

dλ
(λ0) = d2xα

t0

dλ2
(λ0) = 0, α = 1, 2,

giving the result. �
Therefore, we have a necessary condition for the formation or destruction of a swallowtail

and for complex double points to join or leave the main curve. This leads us to the following
definition.

Definition 4.4. A family of parametrized curves xt (λ) (where λ is some intrinsic parameter)
for which

dxt0

dλ
(λ0) = d2xt0

dλ2
(λ0) = 0

is said to have a point of swallowtail perestroika when λ = λ0 and t = t0.

This is a necessary condition for the birth of a swallowtail. However, as with our
definition of generalized cusps, we have again not ruled out further degeneracy at the point.
Although such points satisfy the definition of a generalized cusp, provided there is no further
degeneracy, the curve will not actually appear cusped. As Cayley highlighted, these points
are barely distinguishable from an ordinary point of the curve [13].

Lemma 4.5. If

dxt0

dλ
(λ0) = d2xt0

dλ2
(λ0) = 0 and

d3xt0

dλ3
(λ0) 
= 0,

then there is a well-defined normal to the curve xt0(λ) at λ = λ0.
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Proof. The normal to a curve is given by ñ = τ̂
′
(λ) where τ̂ denotes the unit tangent vector

to the curve. Assuming x ′
t (λ) is real analytic,

x ′
t (λ) = ((λ − λ0)

2F(λ), (λ − λ0)
2G(λ)),

where (F (λ0),G(λ0)) 
= 0. The result then follows. �

4.1. The complex caustic

We now consider a parametrization of the caustic xt (λ) ∈ R
2 in which we assume that

xt (λ) = �t

(
λ, x2

0,C(λ)
)

where λ → (
λ, x2

0,C(λ)
)

for λ ∈ R denotes the pre-caustic
parametrization, x2

0,C(λ) ∈ R. Until now we have restricted the parameter to real values
only, and have thus been ignoring isolated points which correspond to complex parameter
values. We shall refer to the full caustic, in which we allow the parameter to vary over the
complex plane, as the complex caustic.

We know that if x is a point on the caustic, that is x = xt (λ), then

f ′
(x,t)(λ) = f ′′

(x,t)(λ) = 0.

Therefore, by considering the complex caustic, we are determining solutions a = at and
η = ηt to the equations

f ′
(x,t)(a + iη) = f ′′

(x,t)(a + iη) = 0,

where x ∈ R
2. Hence, we can call the complex double points of the caustic complex critical

inflexions of f . Moreover, we are particularly interested in these points if they join the main
caustic at some finite critical time tc. That is, we want there to exist a finite value tc > 0 such
that ηt → 0 as t ↑ tc. If this holds, then a swallowtail can develop at the critical time tc.
Clearly, if ηt → 0 as t ↓ tc, then a swallowtail will disappear. This can be expressed in terms
of derivatives of the reduced action function.

Theorem 4.6. For a two-dimensional caustic, assume that xt (λ) is a real analytic function. If
at a time tc a swallowtail perestroika occurs on the caustic, then x = xt (λ) is a real solution
for x to

f ′
(x,tc)

(λ) = f ′′
(x,tc)

(λ) = f ′′′
(x,tc)

(λ) = f
(4)

(x,tc)
(λ) = 0.

Proof. As before, we differentiate the equation 0 = f ′′
(xt (λ),t)(λ) giving

0 = dxt

dλ
· ∇xf

′′
(xt (λ),t)(λ) + f ′′′

(xt (λ),t)(λ).

Differentiating again gives

0 = dxt

dλ
· ∂

∂λ
{∇xf

′′} +
d2xt

dλ2
· ∇xf

′′ +
dxt

dλ
· ∇xf

′′′ + f
(4)

(xt (λ),t)(λ),

and the result follows. �

As before, we have the converse.

Theorem 4.7. For a two-dimensional caustic, assume that xt (λ) is a real analytic function. If
at a time tc there is a real solution for x to

f ′
(x,tc)

(λ) = f ′′
(x,tc)

(λ) = f ′′′
(x,tc)

(λ) = f
(4)

(x,tc)
(λ) = 0,
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Figure 8. Curves Im{xt (a + iη)} = 0 and Im{yt (a + iη)} = 0 in (a, η) plane as we pass the critical
time tc .

Figure 9. Caustic plotted at corresponding times.

and the vectors

∇xf
′
(x,tc)

(λ), ∇xf
′′
(x,tc)

(λ)

are linearly independent, then x is a point of swallowtail perestroika on the caustic.

Proof. Follows immediately from theorem 3.6 and the proof of theorem 4.6. �

Example 4.8. Let V (x, y) = 0, kt (x, y) ≡ 0 and

S0(x0, y0) = x5
0 + x6

0y0.

The equation of the caustic is λ = a ∈ R

(xt (a), yt (a)) =
(

a

5
(4 + 5a3t + 36a10t2),

1

30a4t
(−1 − 20a3t + 66a10t2)

)
.

This has no cusps for times t < tc and two cusps for times t > tc, where

tc = 4

7

√
2

(
33

7

) 3
4

= 2.5854 . . . .

This is an example of the above mechanism for forming a swallowtail as shown in
figures 8 and 9. The dashed curves are Im{xt (a + iη)} = 0 and the solid curves are
Im{yt (a + iη)} = 0. Conjugate pairs of intersections of these curves are the complex double
points which give caustic swallowtails when η → 0 and remain zero. In this example we
have five complex double points before the critical time tc and four afterwards. The remaining
complex double points do not join the main caustic and so do not influence the behaviour of
the caustic for real times.

4.2. Level surfaces

Unsurprisingly, these phenomena are not restricted to caustics. As one would expect, there is
an interplay between the level surfaces and the caustics, characterized by their pre-images.
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Let the level surface A(x0, x, t) = c where x, x0 ∈ R
2 and c ∈ R, be parametrized

by x(t,c)(λ) = �t

(
λ, x2

0,ls(λ, c)
)
, where λ → (

λ, x2
0,ls(λ, c)

)
is the pre-level surface

parametrization with x2
0,ls(λ, c) ∈ R. The geometric results of DTZ lead us to the following

proposition.

Proposition 4.9. Assume that in two dimensions at x0 ∈ �−1
t H c

t ∩ �−1
t Ct the normal to the

pre-level surface n(x0) 
= 0 and the normal to the pre-caustic ñ(x0) 
= 0 so that neither the
pre-level surface nor the pre-caustic are cusped at x0. Then, ñ(x0) is parallel to n(x0) if and
only if there is a generalized cusp on the caustic.

Proof. Assume that the normal to the pre-caustic ñ(x0) 
= 0 so that the pre-caustic is not
cusped at x0. Therefore, there is a cusp on the caustic at �t(x0) if and only if the tangent plane
to the pre-caustic T̃x0 is spanned by the zero eigenvector e0. However, the tangent plane to
the pre-level surface Tx0 is spanned by e0 when the pre-level surface intersects the pre-caustic.
Thus, there is a cusp on the caustic if and only if the pre-caustic touches the pre-level surface.

�

Corollary 4.10. Assume that in two dimensions at x0 ∈ �−1
t H c

t ∩ �−1
t Ct the normal to the

pre-level surface n(x0) 
= 0 and the normal to the pre-caustic ñ(x0) 
= 0 so that neither the
pre-level surface nor the pre-caustic are cusped at x0. Then, at �t(x0) there is a point of
swallowtail perestroika on the level surface Hc

t if and only if there is a generalized cusp on
the caustic Ct at �t(x0).

Proof. When the pre-curves touch, there is a double point of contact between the pre-caustic
and pre-level surface. However, there is a generalized cusp on a level surface whenever the
pre-level surface intersects the pre-caustic. The double point of contact gives two cusps on
the level surface which must coincide to produce a point of swallowtail perestroika. �

This corollary implies that a swallowtail can only form on a level surface curve where the
curve meets a cusp on the caustic at which the pre-image of the level surface is sufficiently
well behaved. Consider, for instance, the generic cusp example and zero level surface. This
level surface meets the caustic at a cusp but the level surface does not have a triple point.
Instead, it has a cusp because the pre-image consists of a parabola and line pair so that the
normal is not well defined (see figure 3).

Thus, one would expect that the first two derivatives of the level surface being zero, would
also force the first three derivatives of the reduced action function to be zero.

Firstly, it is clear that f(x(t,c)(λ),t)(λ) = c and f ′
(x(t,c)(λ),t)(λ) = 0. Moreover, when the

pre-level surface meets the pre-caustic, we have a root λ for f ′′
(x(t,c)(λ),t)(λ) = 0. Now set

c0 = f(xt (λ),t)(λ)|λ=λ0,

where the caustic xt (λ) has a cusp when λ = λ0. Assume as c ↑ c0 we have two roots of

f ′′
(x(t,c)(λ),t)(λ) = 0,

λ1 and λ2, corresponding to cusps on the level surface, both tending to λ0, so that the pre-
surfaces will touch when c = c0. Then, we will have a repeated root of this when c = c0 and
so

f ′′′
(x(t,c0)(λ),t)(λ) = 0.

Moreover, when c > c0 these two roots will become complex conjugate pairs of points at
which the complex caustic meets the level surface as expected by Klein’s argument.
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(c)

(b)

(a)

Figure 10. (a) All level surfaces (solid line) through a point as it crosses the caustic (dashed line)
at a cusp, (b) one of these level surfaces with its complex double point, and (c) its real pre-image.

Example 4.11. Let V (x, y) = 0, kt (x, y) = 0 and

S0(x0, y0) = x5
0 + x6

0y0.

We consider the behaviour of the level surfaces through a given point at a fixed time as we move
that point through a cusp on the caustic. This is illustrated in figure 10. Part (a) shows all of
the level surfaces through a point demonstrating how three swallowtail level surfaces collapse
together at the cusp to form a single level surface with a point of swallowtail perestroika.
Parts (b) and (c) show how one of these swallowtails collapses on its own and how its pre-
images behave.

4.3. Maxwell sets

When we cross the cool caustic, our minimal entropy solution for the Burgers equation jumps
because the minimizing pre-image point vanishes. However, it is possible for the minimizer
to jump without any pre-images disappearing. A jump will occur if we cross a point at which
there are two different minimizers returning the same value of the action. It is this notion that
leads us to the concept of Maxwell sets. We begin by returning to work in d dimensions.

Definition 4.12. The Maxwell set is the set of all points x ∈ R
d such that if x = �t(x0) and

x = �t(x̌0) where x0 
= x̌0 and x0, x̌0 ∈ R
d , then A(x0, x, t) = A(x̌0, x, t).

As with caustics, we define the cool part of the Maxwell set to be that part corresponding
to the actual minimizer, and so it is the cool part of the Maxwell set across which our solution
should be discontinuous. In terms of the reduced action function, the Maxwell set corresponds
to values of x for which f has two critical points at the same height. If this occurs at the
minimizing value then our solution should jump as shown in figure 11.

We now consider the two-dimensional case.

Lemma 4.13. A point x is in the Maxwell set if and only if there is a Hamilton–Jacobi level
surface with a point of self-intersection (crunode) at x.

Proof. A consequence of the definition of the Maxwell set. �

Motivated by this lemma we have the following definition.
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Before Maxwell set On Cool Maxwell set Beyond Maxwell set

x1
0

x̌1
0

x1
0 x̌1

0

x1
0

x̌1
0

Minimizer at x1
0. Two x0’s at same level. Minimizer jumps.

Figure 11. The graph of the reduced action function as x crosses the Maxwell set.

Acnode. Crunode. Cusp.

Figure 12. The classification of double points.

Definition 4.14. The Maxwell–Klein set is the set of points which are non-cusp double points
of some Hamilton–Jacobi level surface curve.

(That is, these points are either complex double points or points of self-intersection of
some Hamilton–Jacobi level surface.)

The results of section 2 tell us that, in the polynomial case, this set is simple to find. Here
we use the fact that the cusp points of level surfaces sweep out the caustic. Thus, the equation
of double points on the level surfaces must factorize into a product of factors corresponding
to the caustic equation and the Maxwell–Klein equation. It is then only necessary to perform
an analysis on the multiplicity of pre-images to extract the Maxwell set.

Theorem 4.15. In the polynomial case, let Dt be the set of double points of the Hamilton–
Jacobi level surfaces, Ct the caustic set and Bt the Maxwell–Klein set. Then, from Cayley
and Klein’s classification of double points as crunodes, acnodes and cusps, by definition
Dt = Ct ∪ Bt and the corresponding defining algebraic equations factorize Dt = Cn

t Bm
t ,

where m, n are positive integers.

(The Maxwell set is easy to find from the equation Bt = 0.)

Proof. Recall the classification of double points as crunodes, acnodes and cusps due to Cayley
and Klein (see figure 12). We already know that cusps of the Hamilton–Jacobi level surfaces
always occur on the caustic provided the pre-level surface is non-singular. Thus, we wish to
find the remaining double points, the Klein complex double points (acnodes) and the Maxwell
crossover points (crunodes). �

Theorem 4.16. Let ρ(t,c)(x) be the resultant

ρ(t,c)(x) = R(f(x,t)(·) − c, f ′
(x,t)(·)),

where x = (x1, x2). Then, x ∈ Dt if and only if for some c

ρ(t,c)(x) = ∂ρ(t,c)

∂x1
(x) = ∂ρ(t,c)

∂x2
(x) = 0.
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Further,

Dt(x) = gcd
(
ρ1

t (x), ρ2
t (x)

)
,

where gcd(·, ·) denotes the greatest common divisor and ρ1
t and ρ2

t are the resultants

ρ1
t (x) = R

(
ρ(t,·)(x),

∂ρ(t,·)
∂x1

(x)

)
and ρ2

t (x) = R

(
∂ρ(t,·)
∂x1

(x),
∂ρ(t,·)
∂x2

(x)

)
.

Proof. Recall that the equation of the level surface of Hamilton–Jacobi functions is merely
the result of eliminating x1

0 between the equations

f(x,t)

(
x1

0

) = c and f ′
(x,t)

(
x1

0

) = 0.

We form the resultant ρ(t,c)(x) using Sylvester’s formula or the algorithm of Pohst and
Zassenhaus [15]. The double points of the level surface must satisfy for some c ∈ R:

ρ(t,c)(x) = 0,
∂ρ(t,c)

∂x1
(x) = 0 and

∂ρ(t,c)

∂x2
(x) = 0.

Sylvester’s formula proves all three equations are polynomial in c. To proceed we eliminate c
between pairs of these equations using resultants, giving

R

(
ρ(t,·)(x),

∂ρ(t,·)
∂x1

(x)

)
= ρ1

t (x) and R

(
∂ρ(t,·)
∂x1

(x),
∂ρ(t,·)
∂x2

(x)

)
= ρ2

t (x).

Let Dt = gcd
(
ρ1

t , ρ
2
t

)
be the greatest common divisor of the algebraic ρ1

t and ρ2
t which can

be found using Euclid’s algorithm. Then, Dt(x) = 0 is the equation of double points. �

Evidently, it is now a simple matter to factorize the expression Dt = Cn
t Bm

t , since Ct is
known explicitly. The Maxwell–Klein set of double points is characterized by Bt = 0, so we
only need to remove the Klein double points.

Clearly, if f(x,t)

(
x1

0

)
is continuous in x1

0 , a Maxwell set can only exist in a region with
three or more pre-images. Typically, the formation of a swallowtail on the caustic gives rise
to a region inside the swallowtail with four pre-images and so will necessitate the formation
of a Maxwell set, also typically of a swallowtail shape. Moreover, as has been explained,
the swallowtail on the caustic leads to the formation of swallowtail level surfaces which are
clearly connected to the Maxwell set by lemma 4.13.

The technique for finding hot/cool caustic boundaries outlined in section 3.3 corresponds
to finding the intersections between the caustic and Maxwell set (as well as the points of
self-intersection of the caustic). Further, the points we are interested in are the intersections
with the cool Maxwell set. As a result, these points will be marked in the level surfaces as
points at which there is a triple point consisting of a cusp meeting a line as shown in figure 7
part 2 and below in figure 13.

Example 4.17 (the generic cusp). Let V (x, y) = 0, kt (x, y) = 0 and S0(x0, y0) = x2
0y0

/
2.

Here the equation of double points is

x2(8 − 27t2x2 + 24ty + 24t2y2 + 8t3y3)2 = 0,

where the second factor corresponds to the caustic. Thus, the Maxwell–Klein set is given
by x2 = 0, and a simple analysis of the multiplicity of the pre-image points tells us that the
Maxwell set is given by x = 0 where y > −1

t
. However, in this case, although the whole
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(a) (b) (c)

Figure 13. (a) The swallowtail caustic (long-dashed line) and Maxwell set (solid line) with the
curve of Klein points (dotted line), (b) the cool parts of the caustic and Maxwell set highlighted
in bold, and (c) the caustic and Maxwell set with the level surface through the caustic hot/cool
boundary (short-dashed line).

Maxwell set is cool by definition, there will be no jump as we cross the Maxwell set because
of the symmetry of the solution about the line x = 0.

Example 4.18 (the polynomial swallowtail). Let V (x, y) = 0, kt (x, y) = 0 and

S0(x0, y0) = x5
0 + x2

0y0.

Again, the Maxwell–Klein set can be found by factorization as above giving

0 = −675 + 52t4 − t8 + 3120t3x − 224t7x + 4t11x − 38 400t2x2 + 1408t6x2 + 128 000tx3

− 5400ty + 312t5y − 4t9y + 12 480t4xy − 448t8xy − 76 800t3x2y

−16 200t2y2 + 624t6y2 − 4t10y2 + 12 480t5xy2 − 21 600t3y3

+ 416t7y3 − 10 800t4y4.

The hot and cool parts of this caustic have already been calculated. The cool parts of the
caustic and Maxwell set are shown in figure 13 by a thick line.

5. Some applications in two dimensions

5.1. Real turbulence and the ζ process

Definition 5.1. The turbulent times t are times when the pre-level surface of the minimizing
Hamilton–Jacobi function touches the pre-caustic. Such times t are zeros of a stochastic
process ζ c(·), i.e. ζ c(t) = 0.

These turbulent times are clearly times at which the number of cusps on the corresponding
level surface will change. We begin with some minor generalizations of results in RTW and
also [16].

Proposition 5.2. Assume �t is globally reducible with associated parametrization of the
pre-caustic λ → (

λ, x2
0,C(λ)

)
in two dimensions. Then, the turbulence process at λ is given by

ζ c(t) = f(xt (λ0),t)(λ0) − c,

where f(x,t)

(
x1

0

)
is the reduced action function evaluated at points x = xt (λ0) =

�t

(
λ0, x

2
0(λ0)

) ∈ Ct , λ = λ0 satisfying

Ẋt (λ) · dxt

dλ
(λ) = 0,

where Ẋt (λ) = �̇t

(
λ, x2

0,C(λ)
)

and xt (λ0) ∈ Cc
t , the cool part of the caustic.

Hence, there are three kinds of real stochastic turbulence:
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(i) cusped, where there is a cusp on the caustic;
(ii) zero speed, where the Burgers fluid velocity is zero;

(iii) orthogonal, where the Burgers fluid velocity is orthogonal to the caustic.

Proof. The number of cusps on the relevant pre-level surface is

nc(t) = #
{
λ ∈ R : f(xt (λ),t)(λ) = c

}
,

where the roots λ = λ0 correspond to points in the cool part of the caustic. The pre-surfaces
touch when nc(t) changes, which occurs when

d

dλ
f(xt (λ),t)(λ) = 0.

�

For stochastic turbulence to be intermittent, we require that the process ζ c(t) is recurrent.

Proposition 5.3. Let V (x, y) = 0, kt (x, y) = x and

S0(x0, y0) = f (x0) + g(x0)y0,

where f, g, f ′ and g′ are zero at x0 = a but g′′(a) 
= 0. Then, for orthogonal turbulence at a,
the zeta process is

ζ c(t) = −aεWt + ε2Wt

∫ t

0
Ws ds − ε2

2

∫ t

0
W 2

s ds − c.

We note the following result of RTW [10] (also see for results on periodic systems).

Lemma 5.4. Let Wt be a BM(R) process starting at 0, c any real constant and

Yt = −aεWt + ε2Wt

∫ t

0
Ws ds − ε2

2

∫ t

0
W 2

s ds − c.

Then, with probability 1, there exists a sequence of times tn ↗ ∞ such that

Ytn = 0 for every n.

Here we recapitulate our belief that cusped turbulence will be the most important. As
we have shown, when the cusp on the caustic passes through a level surface, it forces a
swallowtail to form on the level surface. The points of self-intersection of this swallowtail
form the Maxwell set.

We can also use a lemma of Kac [17] to provide simple integral expressions for the number
of cusps on the level surfaces and for the number of cusps on the caustic.

Lemma 5.5 (Kac’s lemma). If f (x) is continuous for a � x � b and continuously
differentiable for a < x < b then, assuming f (x) has a finite number of turning points,
the number of zeros of f (x) in (a, b) is given by

n(a, b; f ) = lim
R→∞

(2π)−1
∫ R

−R

∫ b

a

cos(ξf (x))|f ′(x)| dx dξ,

where multiple zeros are counted once and if either a or b is a zero it is counted as 1
2 .

Theorem 5.6. Let λ → xt (λ) be a parametrization of the caustic derived from the pre-caustic
x1

0 parametrization. The number of generalized cusps on a level surface Hc
t is given by

lim
R→∞

(2π)−1
∫ R

−R

∫ b

a

cos
(
ξ
{
f(xt (λ),t)(λ) − c

}) ∣∣∣∣dxt

dλ
(λ) · ∇xf(xt (λ),t)(λ)

∣∣∣∣ dλ dξ.
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Moreover, the number of generalized cusps on the caustic Ct is given by

lim
R→∞

(2π)−1
∫ R

−R

∫ b

a

cos
(
ξ
{
f ′′′

(xt (λ),t)(λ)
}) ∣∣∣∣dxt

dλ
(λ) · ∇xf

′′′
(xt (λ),t)(λ) + f

(4)

(xt (λ),t)(λ)

∣∣∣∣ dλ dξ,

if the vectors

∇xf
′
(xt (λ),t)(λ), ∇xf

′′
(xt (λ),t)(λ)

are linearly independent for all λ ∈ R, with f(xt (λ),t)(λ) = c or f ′′′
(xt (λ),t)(λ) = 0.

Proof. A simple consequence of Kac’s lemma 5.5, the geometric results of DTZ and
theorem 3.6. �

Observe that formally this is a consequence of the result that, if at time t there are nt cusps
on the caustic at λc

1(t), λc
2(t), . . . , λ

c
nt
(t), then

nt∑
i=1

δ
{
λ − λc

i (t)
}

dλ = δ
{
f ′′′

(xt (λ),t)(λ)
} ∣∣∣∣ d

dλ

(
f ′′′

(xt (λ),t)(λ)
)∣∣∣∣ dλ

and

δ
{
f ′′′

(xt (λ),t)(λ)
} = (2π)−1

∫ ∞

−∞
dξ exp

{
iξf ′′′

(xt (λ),t)(λ)
}
.

5.2. Complex turbulence and the resultant η process

Let
(
λ, x2

0,C(λ)
)

denote the pre-caustic at time t so that xt (λ) = �t

(
λ, x2

0,C(λ)
)

is a
parametrization of the caustic. When Im

{
�t

(
a + iη, x2

0,C(a + iη)
)}

is random, the values
of η(t) for which this imaginary part is zero will form a stochastic process. As we have
established, these zeros correspond to solutions of

f ′
(x,t)(λ) = f ′′

(x,t)(λ) = f ′′′
(x,t)(λ) = f

(4)

(x,t)(λ) = 0.

To find these points we need the following lemma.

Lemma 5.7. Let g and h be polynomials of degrees m and n, respectively, with no common
roots or zeros. Let f = gh be the product polynomial. Then, the resultant

R(f, f ′) = (−1)mn

(
(N − 1)!

f (N)(0)

g(m)(0)

(m − 1)!

h(n)(0)

(n − 1)!

)N

R(g, g′)R(h, h′)R(g, h)2,

where N = m + n and R(g, h) 
= 0.

Proof. Recall that

R(f, f ′) = R(gh, gh′ + hg′) =
(

f (N)(0)

(N − 1)!

)−N ∏
w∈Z(g)
w∈Z(h)

(gh′ + hg′)(w),

where Z(g) denotes the set of zeros of g and Z(h) those of h. The result then follows by
evaluating the product. �

Since f ′
(xt (λ),t)

(
x1

0

)
is a polynomial in x0 with real coefficients, its zeros are real or occur

in complex conjugate pairs. Of the real roots, x0 = λ is repeated. So

f ′
(xt (λ),t)

(
x1

0

) = (
x1

0 − λ
)2

Q(λ,t)

(
x1

0

)
H(λ,t)

(
x1

0

)
,
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where Q is the product of quadratic factors

Q(λ,t)

(
x1

0

) =
q∏

i=1

{(
x1

0 − ai
t

)2
+
(
ηi

t

)2}
and H(λ,t)

(
x1

0

)
is the product of real factors corresponding to real zeros. This gives

f ′′′
(xt (λ),t)

(
x1

0

)∣∣
x1

0 =λ
= 2

q∏
i=1

{(
λ − ai

t

)2
+
(
ηi

t

)2}
H(λ,t)(λ).

We now assume that the real roots of H are distinct as are the complex roots of Q. Denoting

f ′′′
(xt (λ),t)

(
x1

0

)∣∣∣
x1

0 =λ
by f ′′′

t (λ), etc, a simple calculation gives

∣∣Rλ

(
f ′′′

t (λ), f
(4)
t (λ)

)∣∣
= Kt

q∏
k=1

(
ηk

t

)2 ∏
j 
=k

{(
ak

t − a
j
t

)4
+ 2

((
ηk

t

)2
+
(
η

j
t

)2)(
ak

t − a
j
t

)2
+
((

ηk
t

)2 − (
η

j
t

)2)2}
× |Rλ(H,H ′)||Rλ(Q,H)|2,

Kt being a positive constant. Thus, the condition for a swallowtail perestroika to occur is that

ρη(t) := ∣∣Rλ

(
f ′′′

t (λ), f
(4)
t (λ)

)∣∣ = 0,

where we call ρη(t) the resultant eta process. When the zeros of ρη(t) form a perfect set,
swallowtails will spontaneously appear and disappear on the caustic infinitely rapidly. As they
do so, the geometry of the cool part of the caustic will rapidly change as the λ shaped sections
typical of a swallowtail caustic appear and disappear. Moreover, Maxwell sets will be created
and destroyed with each swallowtail that forms and vanishes adding to the turbulent nature of
the solution in these regions. We call this complex turbulence occurring at the turbulent times
which are the zeros of the resultant eta process.

This is in fact a very special form of the real turbulence outlined previously. As we
have demonstrated, the condition for a swallowtail to form on the caustic is that its first two
parametric derivatives are zero. This clearly fits into the scheme for real cusped turbulence.
Thus, the pre-curves should touch at these points in a particular manner.

Corollary 5.8. Assume that the pre-level surface and pre-caustic touch at a point x̃0 where
the normal to the pre-level surface is nonzero and well defined. Assume that this point of
contact is of second order. Then, a swallowtail perestroika occurs on the caustic at that point.
Moreover, at such a point, the first three derivatives of the parametrization of the level surface
will be zero.

5.3. The non-generic swallowtail

We conclude our two-dimensional work with an extended example. The non-generic
swallowtail,

S0(x0, y0) = x5
0 + |x0| 3

2 y0,

where V (x, y) = 0 and kt (x, y) = 0, was first investigated by DTZ. For this initial condition,
there is only one complex double point which can easily be found numerically, shown in
figure 14.

An additional swallowtail forms on the caustic when this point joins the curve. Over
time these swallowtails intersect one another and the caustic develops into a five-pointed star.
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Figure 14. Complex double point joins the caustic.

Figure 15. Hot and cool parts of the non-generic swallowtail before and after the swallowtail
perestroika.

Figure 15 illustrates this development and also indicates the hot and cool parts as calculated
numerically using our method. Cool parts are drawn in a thick solid line and hot parts with a
dashed line.

6. Some applications in three or more dimensions

6.1. Hot and cool caustics in three dimensions

Using our new technique for identifying hot and cool parts, we can, for the first time, obtain
an explicit expression for the hot and cool boundary on the three-dimensional swallowtail
caustic. Previously, only a numerical approximation was possible due to the complexity of
earlier techniques. Let

S0(x0, y0, z0) = x7
0 + x3

0y0 + x2
0z0, V ≡ 0, kt ≡ 0.

The parametric form of the pre-caustic is

x0 = λ1,

y0 = λ2,

z0(λ1, λ2) = − 1

2t

(
42tλ5

1 − 9t2λ4
1 − 4t2λ2

1 + 6tλ1λ2 + 1
)
.

The caustic is

xt (λ1, λ2) = λ2
1t
(−35λ4

1 + 9tλ3
1 + 4tλ1 − 3λ2

)
,

yt (λ1, λ2) = λ2 + tλ3
1,

zt (λ1, λ2) = −21λ5
1 +

9

2
tλ4

1 + 3tλ2
1 − 3λ1λ2 − 1

2t
.
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Boundary on the caustic. Hot and cool parts.

Figure 16. The 3D swallowtail caustic.

Then, following the earlier definitions, the boundary is given by finding the repeated roots
of

F̃ (x0) = −30λ4
1 − 2λ2 + 3λ1t + 8λ3

1t − 20λ3
1x0 + tx0 + 6λ2

1tx0 − 12λ2
1x

2
0 + 3λ1tx

2
0

− 6λ1x
3
0 + tx3

0 − 2x4
0 ,

G̃(x0) = −35λ4
1 − 3λ2 + 4λ1t + 9λ3

1t − 28λ3
1x0 + 2tx0 + 9λ2

1tx0 − 21λ2
1x

2
0 + 6λ1tx

2
0

− 14λ1x
3
0 + 3tx3

0 − 7x4
0 .

We can then find the boundary (on the pre-caustic) explicitly as

λ2 = λ2(λ1)

=




1
4096

(−35952λ4
1 + 4608λ1t + 6176λ3

1t + 256t2 + 408λ2
1t

2 + 72λ1t
3

+ 9t4 + {P1(λ1) − Q1(λ1)} 1
3 + {P1(λ1) + Q1(λ1)} 1

3
)
, λ1 < λc,

1
87 808

(−653 072λ4
1 + 87 808λ1t + 98 784λ3t + 6272t2 + 7448λ2

1t
2

+ 1512λ1t
3 + 243t4 + {P2(λ1) − Q2(λ1)} 1

3 + {P2(λ1) + Q2(λ1)} 1
3
)
, λ1 > λc,

where P1 and P2 are polynomials of degree 12 in λ1 and t, and Q1 and Q2 are the square
roots of polynomials of degree 24 in λ1 and t. Also λc is the unique real solution for λ to the
equation

70λ3 − 15λ2t − t = 0.

It can then be easily demonstrated that the point on the caustic xt (λ1, λ2) is

(i) hot if λ2 < λ2(λ1);
(ii) cool if λ2 � λ2(λ1).

This is illustrated in figure 16 where the hatched areas represent the cool parts and the plain
areas the hot parts.

6.2. The complex caustic in three dimensions

We consider how to extend our work on the complex caustic to a three-dimensional setting.
There is no immediate analogue of Klein’s work for three dimensions and so we consider
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instead what can be gained from the derivatives of the reduced action function. We have
already found a geometrical interpretation for zeros of each of the first four derivatives in
terms of the subcaustic, and so our attention turns to the fifth derivative. The natural way
to extend our work is to reduce the three-dimensional case to a two-dimensional setting so
that we can again apply Klein’s ideas. We achieve this by considering the subcaustic and its
projection onto each of the planes x = 0, y = 0 and z = 0. Setting the first three derivatives
of f to zero forces us onto the subcaustic, and so we want to consider when complex double
points of the caustic join the subcaustic. That is, we want to solve

1

η
Im{�t(a + iη, λ2(a + iη), zt (a + iη, λ2(a + iη)))} = 0,

where λ2 = λ2(λ1) denotes the equation of the pre-subcaustic. However, this gives us three
equations in the two unknowns a and η. Thus, we are forced to consider the projections of the
subcaustic onto three orthogonal planes.

As in the two-dimensional case, we can consider when each of these projected curves has
a point of swallowtail perestroika. If we find a time tc and a parameter a at which a complex
double point joins the projected subcaustic for each projection, then each will simultaneously
have a point of swallowtail perestroika. Moreover, at such a time and position

∂xsc
t

∂λ1
= ∂2xsc

t

∂λ2
1

= 0,

which leads us to the following proposition regarding the reduced action functional.

Proposition 6.1. If each of the projected subcaustics has a point of swallowtail perestroika at
a time tc when λ1 = a, then there is a real solution x to

f ′
(x,tc)

(a) = f ′′
(x,tc)

(a) = f ′′′
(x,tc)

(a) = f
(4)

(x,tc)
(a) = f

(5)

(x,tc)
(a) = 0.

Proof. Firstly, if x = xsc
t (a), the subcaustic. Then, 0 = f ′′′

(xsc
t (a),t)(a) and differentiating with

respect to a gives

0 = dxsc
t

da
· ∇xf

′′′
(xsc

t (a),t)(a) + f
(4)

(xsc
t (a),t)(a).

Differentiating again gives

0 = dxsc
t

da
· ∂

∂a
{∇xf

′′′} +
d2xsc

t

da2
· ∇xf

′′′ +
dxsc

t

da
· ∇xf

(4) + f
(5)

(xsc
t (a),t)(a),

and the result follows. �

The formation of a swallowtail on each of the projections of the subcaustic produces an
interesting pyramidical shape on the caustic.

Example 6.2. Let V ≡ 0, kt ≡ 0 and

S0(x0, y0, z0) = x4
0 + x3

0 + x2
0 + x5

0y0 + x2
0z0.

Then (to 5 d.p.) at time t = 5.980 56 when x = −0.199 789, y = 1.629 76, z = −1.340 06
and x0 = 0.230 91, the first five derivatives of the reduced action functional will be zero.
Therefore, from the preceding propositions, we would expect swallowtails to form on each
of the three projections of the subcaustic (figure 17). Moreover, if we consider the caustic,
two-dimensional swallowtails form on slices taken parallel to any of the axes. In fact a pyramid
like structure forms on the caustic (figure 18).



7122 A D Neate and A Truman

Figure 17. Subcaustic with projections at times t = 5, 6, 7, 8, 9.

Figure 18. The caustic (with subcaustic inset) at times t = 5 and t = 9.

6.3. The Maxwell set in d dimensions

We now come to one of our main results. We present a simple extension of the geometric
results of section 4.3, in particular to theorems 4.15 and 4.16. For polynomial f(x,t)

(
x1

0

)
,

this enables us to state an explicit algebraic equation for the entire set of singularities for the
inviscid limit of the Burgers fluid velocity in any dimension. Again from this, it is a simple
matter to separate the caustic equation and then split the Maxwell set from the remaining
Maxwell–Klein set. In this section we dispense with the need to refer to the detailed geometry
of the level surfaces. We assume that the action A is globally reducible and polynomial in
space and time variables.
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Theorem 6.3. If the associated reduced action function f is a polynomial, then the set of all
possible discontinuities for a d-dimensional Burgers fluid velocity field in the inviscid limit is
the double discriminant

D(t) := Dc{Dλ(f(x,t)(λ) − c)} = 0,

where Dx(p(x)) is the discriminant of the polynomial p with respect to x.

Proof. The discriminant of (f(x,t)(λ) − c) with respect to λ is simply the resultant

0 = R(c) := Rλ(f(x,t)(λ) − c, f ′
(x,t)(λ)),

where according to Sylvester’s formula

R(c) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f (m)(λ̃)/m! f (m−1)(λ̃)/(m − 1)! · · · f ′(λ̃) f (λ̃) − c 0 · · · 0
0 f (m)(λ̃)/m! · · · · · · f ′(λ̃) f (λ̃) − c · · · 0
...

...
...

...
...

...
...

...

0 · · · · · · · · · · · · · · · · · · f (λ̃) − c

f (m)(λ̃)/m! f (m−1)(λ̃)/(m − 1)! · · · f ′(λ̃) 0 0 · · · 0
0 f (m)(λ̃)/m! · · · · · · f ′(λ̃) 0 · · · 0
...

...
...

...
...

...
...

...

0 · · · · · · · · · · · · · · · · · · f ′(λ̃)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where the resultant is independent of λ̃. Therefore, we can set λ̃ = x1
0(i)(x, t) where

x1
0(i)(x, t) is any one of the real or complex roots of f ′

(x,t)(λ) = 0. Hence, R(c) must have a
factor

(
f(x,t)(x

1
0(i)(x, t))−c

)
for each x1

0(i)(x, t) real or complex. Since R(c) is a polynomial
of degree m, the degree of λ in f ′

(x,t)(λ), we see that

R(c) =
m∏

i=1

(
f(x,t)

(
x1

0(i)(x, t)
)− c

)
,

where x1
0(i)(x, t) is an enumeration of the real and complex roots λ of f ′

(x,t)(λ) = 0.
Moreover, the discriminant is given in terms of the zeros of R(c) as

Dc(R(c)) = b2m−2
0

∏
i<j

(
f(x,t)

(
x1

0(i)(x, t)
)− f(x,t)

(
x1

0(j)(x, t)
))2

,

where b0 is the leading coefficient of R(c). This is zero when

(i) x1
0(i)(x, t) = x1

0(j)(x, t) and i 
= j , which corresponds to the complex caustic.
(ii) x1

0(i)(x, t) 
= x1
0(j)(x, t) but f(x,t)

(
x1

0(i)(x, t)
) = f(x,t)

(
x1

0(j)(x, t)
)
, which corresponds

to the Maxwell–Klein set.

Hence, the equation D(t) = 0 contains the cool caustic and cool Maxwell set, and so contains
all points of discontinuity of the minimal entropy solution of the Burgers equation. �

In the two-dimensional case, the curves defined by D(t) above and Dt given in
theorem 4.16 coincide. However, unlike the two-dimensional method, the powers of the
corresponding factors can be found explicitly.

Lemma 6.4. The equation of the caustic is equivalent to∏
i<j

(
x1

0(i)(x, t) − x1
0(j)(x, t)

)2 = 0,

where we are taking the product over all real and complex roots x1
0 of f ′

(x,t)

(
x1

0

) = 0.
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Proof. The caustic can be seen as the zeros of the discriminant of f ′
(x,t)

(
x1

0

)
taken with respect

to x1
0 . This discriminant is(

f (m)(0)

m!

)2m−2 ∏
i<j

(
x1

0(i)(x, t) − x1
0(j)(x, t)

)2
,

giving the result. �

Lemma 6.5. If f is a polynomial such that f ′(b) = f ′(a) = 0, then

f (b) − f (a) = (b − a)3g(a, b),

for some polynomial g.

Proof. Assume, without loss of generality, that a = 0. Then,

f (b) − f (0) =
∫ b

0
x(x − b)h(x) dx,

where f ′(x) = x(x − b)h(x) for some polynomial h(x). Differentiating with respect to b
gives

f ′(b) = −
∫ b

0
xh(x) dx = O(b2),

and so the result follows. �

Theorem 6.6. The double discriminant D(t) factorizes as

D(t) = b2m−2
0 (Ct )

3(Bt )
2

where Bt = 0 is the equation of the Maxwell–Klein set and Ct = 0 is the equation of the
caustic. The expressions Ct and Bt defining the caustic and the Maxwell–Klein set are both
algebraic in x and t.

Proof. From theorem 6.3 and lemma 6.4 we have that

D(t) = b2m−2
0

∏
i<j

(
f(x,t)

(
x1

0(i)(x, t)
)− f(x,t)

(
x1

0(j)(x, t)
))2

= b2m−2
0

∏
i<j

{(
x1

0(i)(x, t) − x1
0(j)(x, t)

)2}3{pij (x, t)}2,

where from lemma 6.5

f(x,t)

(
x1

0(i)(x, t)
)− f(x,t)

(
x1

0(j)(x, t)
) = (

x1
0(i)(x, t) − x1

0(j)(x, t)
)3

pij (x, t).

Moreover, ∏
i<j

pij (x, t),

is a symmetric function of the roots of f ′
(x,t)

(
x1

0

) = 0, and so, by the fundamental theorem of
symmetric functions [11], is a polynomial in the coefficients of f ′

(x,t)

(
x1

0

)
and so is algebraic

in x and t. �

Example 6.7 (the butterfly). Let V (x, y, z) = 0, kt (x, y) = 0 and

S0(x0, y0, z0) = x3
0y0 + x2

0z0.
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The butterfly initial condition is the three-dimensional equivalent of the generic cusp.
Evaluating the first discriminant gives Dλ(f(x,t)(λ) − c) as a polynomial of degree 5 in c.
Therefore, the second discriminant can be found easily using the standard formula for the
discriminant of the quintic.

Moreover, we can then perform the required factorization by simply dividing by the factor
corresponding to the caustic to give the Maxwell–Klein equation

432(3x2 − y2) + 432(2xy + 25x3y − 9xy3 + 30x2z − 12y2z)t + 27(72x2 + 500x4

+ 3125x6 − 24y2 + 192x2y2 − 1125x4y2 − 36y4 + 27x2y4 − 27y6

+ 320xyz + 2400x3yz − 1152xy3z + 1920x2z2 − 960y2z2)t2

+ 54(24xy + 510x3y + 3750x5y − 90xy3 − 990x3y3 − 108x3y5

+ 288x2z + 1000x4z − 120y2z + 576x2y2z − 1125x4y2z − 144y4z

+ 54x2y4z − 81y6z + 640xyz2 + 2400x3yz2 − 1728xy3z2 + 1920x2z3

− 1280y2z3)t3 + 9(129x2 + 775x4 − 43y2 + 1536x2y2 + 21 150x4y2

− 159y4 − 3807x2y4 − 81y6 − 972x2y6 + 1152xyz + 12 240x3yz

− 3240xy3z − 11 880x3y3z + 5184x2z2 + 6000x4z2 − 2880y2z2

+ 6912x2y2z2 − 2592y4z2 + 324x2y4z2 − 972y6z2 + 7680xyz3 + 9600x3yz3

− 13 824xy3z3 + 11 520x2z4 − 11 520y2z4)t4 + 18(43xy + 673x3y − 6xy3

+ 4833x3y3 − 540xy5 − 243xy7 + 387x2z + 775x4z − 172y2z + 3072x2y2z

− 477y4z − 3807x2y4z − 162y6z + 1728xyz2 + 6120x3yz2 − 3240xy3z2

+ 3456x2z3 − 2880y2z3 + 2304x2y2z3 − 1728y4z3 − 324y6z3 + 3840xyz4

− 3456xy3z4 + 2304x2z5 − 4608y2z5)t5 + (345x2 + 906x4 − 115y2

+ 6156x2y2 − 567y4 + 19 035x2y4 − 1215y6 − 729y8 + 4644xyz + 24 228x3yz

− 432xy3z − 19 440xy5z + 13 932x2z2 − 9288y2z2 + 55 296x2y2z2

− 17 172y4z2 − 2916y6z2 + 41 472xyz3 − 38 880xy3z3 + 31 104x2z4

− 51 840y2z4 − 15 552y4z4 + 27 648xyz5 − 27 648y2z6)t6 + 2(115xy

+ 743x3y + 333xy3 + 729xy5 + 690x2z − 345y2z + 6156x2y2z − 1134y4z

− 1215y6z + 4644xyz2 − 216xy3z2 + 4644x2z3 − 6192y2z3 − 5724y4z3

+ 10 368xyz4 − 10 368y2z5)t7 + (51x2 − 17y2 + 762x2y2 − 72y4 − 54y6

+ 920xyz + 1332xy3z + 1380x2z2 − 1380y2z2 − 2268y4z2 + 6192xyz3

− 6192y2z4)t8 + 2(17xy + 57xy3 + 51x2z − 34y2z − 72y4z + 460xyz2

− 460y2z3)t9 + (3x2 − y2 − y4 + 68xyz − 68y2z2)t10 + 2y(x − yz)t11 = 0.

Distinguishing the Maxwell set from the Maxwell–Klein set is a more complex matter
in this example as there are five pre-images (real and complex) everywhere. We can rule
out the existence of a Maxwell set below the caustic in figure 19 as there is only one real
pre-image. However, above the caustic there are three real and two complex pre-images.
We have included this to demonstrate how our simple method gives the algebraic equation
of these very complicated surfaces. We have computed the Maxwell–Klein set in many
more complex examples, including the three-dimensional polynomial swallowtail and the
non-generic swallowtail, where the factorized expression runs to seven pages.
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The Butterfly caustic The Maxwell-Klein set Together

Figure 19. The caustic and Maxwell–Klein set at time t = 1.

7. Conclusion

We have seen how the reduced action function provides a powerful tool to simplify and analyse
many aspects of the Burgers equation. The assumptions required for global reducibility
appear to be quite restrictive. However, for local reducibility at x, we require only that in a
neighbourhood of x there is at most one value of α such that

∂A
∂xα

0

= ∂2A(
∂xα

0

)2 = 0 when ∇x0A = 0.

Therefore, to apply our results, we only have to avoid two second-order derivatives with respect
to two different Cartesian coordinates being zero simultaneously. Thus, local reducibility is
valid for a very general class of problems. With this property, we can easily establish the
geometry and behaviour of the caustic and level surfaces. In particular, we can identify the
points of turbulent behaviour and demonstrate the recurrent nature of the turbulence. Of
the turbulent behaviours identified in two dimensions, cusped turbulence, which incorporates
complex turbulence, appears to be the most important. Under this condition, not only can
cusps appear and disappear on the level surfaces, swallowtails can form on both the caustics
and level surfaces, changing the shape of the cool part of the caustic. Moreover, when a
swallowtail forms on the caustic, a Maxwell set can be created adding further discontinuities
to the Burgers velocity field. Finally, we have been able to state an explicit equation for
the complete set of discontinuities for the inviscid limit of the Burgers fluid velocity in the
d-dimensional polynomial case. This is a much simpler approach than the Clausius–Clapeyron
equations traditionally used to identify the Maxwell set [18]. Needless to say, we have
calculated numerous examples of Maxwell sets and the other phenomena presented in this
paper but have only included a few because of restrictions on space.
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